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Incremental Learning in Multiple Limb Positions
for Electromyography-Based Gesture

Recognition using Hyperdimensional Computing
Andy Zhou, Student Member, IEEE , Rikky Muller Senior Member, IEEE , and Jan Rabaey, Fellow, IEEE

Abstract— Prosthetic control for rehabilitation, among
many other applications, can leverage in-sensor hand ges-
ture recognition in which lightweight machine learning
models for classifying electromyogram (EMG) signals are
embedded on miniature, low-power devices. While research
efforts have demonstrated high accuracy in controlled
settings, these methods have yet to make a significant
commercial or clinical impact due to the wide variety of
scenarios and situational contexts that are faced during
everyday use. Typical static models suffer from the effects
of EMG signal variation caused by changing contexts in
which they are deployed. Here, we propose an incremental
learning algorithm using hyperdimensional (HD) computing
that can efficiently learn gesture patterns performed in new
limb positions, a context-change which normally signifi-
cantly degrades classification accuracy. A prototype-based
learning algorithm, HD computing enables memory- and
computation-efficient incorporation of new training exam-
ples into the model, while preserving information about al-
ready learned contexts. We present various configurations
of the incremental HD classifier, allowing system designers
to trade classification performance for implementation effi-
ciency as measured through memory footprint. Incremental
learning experiments with data from 5 subjects show that
HD computing can achieve similar accuracies as incre-
mentally trained SVM and LDA classifiers while requiring
a fraction of the memory allocation.

Index Terms— Hand gesture recognition, hyperdimen-
sional computing, incremental learning

I. INTRODUCTION

FOR users of upper-limb prostheses, hand gesture recogni-
tion has the potential to enable higher levels of dexterity

over existing control strategies while remaining unobtrusive
[1]. Advances in machine learning (ML) algorithms have
enabled a larger number of gestures to be classified using
electromyographic (EMG) signals from muscle activity, con-
trolling more numerous degrees of freedom in an attempt to
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restore natural movement. Various types of algorithms have
been employed, including support vector machines (SVM [2]),
linear discriminant analysis (LDA [3]), and artificial neural
networks [4]. These gesture recognition capabilities can be
embedded on-board wearable/implantable devices and pros-
theses, eliminating the need for separate computation devices
and inefficient wireless streaming of raw EMG data [5], [6].

Still, a lack of robustness due to variation in EMG signals
remains one of the largest issues leading to abandonment
of smart prosthetics [7]. Over time, deployment conditions
become different than the ones in which a classifier is trained,
leading to accuracy degradation [8]. One common problem
is the variation of upper limb position [9], [10]. Users must
be able to expect accurate classification with their limb in
various postures, but this causes recording electrodes to shift
and affects gesture performance as well as underlying muscle
activity [11]. Experiments have shown that gesture classifiers
trained in one position fail to perform in others with acceptable
accuracy due to the shifts in data distribution [11]–[13].

To address this, training datasets are expanded to include
EMG signals collected in a larger variety of limb positions
[11], [12] along with other sensing modalities like accelerom-
eters and gyroscopes [13]–[15]. These can be used to train
larger, more complex models [11], [13], [16] or multiple
position-specific models [11], [14], [15]. As more training data
is required, it becomes burdensome to the user and impractical
to collect it all at once for batch training. Instead, classifiers
which can be incrementally trained over several sessions may
be more suited for this application. When untrained limb
position contexts are encountered smaller incremental training
datasets may be collected to update the existing model.

Several works have demonstrated and advocated for adapt-
able ML models and incremental learning to address EMG
variation. A general framework consists of selectively updating
the training dataset with new examples as new information
is made available (Figure 1a) [17]. Incremental training for
gesture recognition with such a framework has been demon-
strated using both SVM [18], [19] and LDA [10], [17], [20]–
[22] classifiers. Much focus has been on how well models
adapt to gradual changes in the EMG over prolonged use, but
when the incrementally learned contexts consist of multiple
limb positions that all continue to be relevant, more attention
must be paid to how well models also retain past information.
Incrementally adapting a model to a new position must enable
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Fig. 1. Framework for incremental learning in multiple limb positions.
(a) Diagram with different methods for updating model parameters at
each step. An accumulated training set for updating models may be
kept as new data is collected (gray path), or new data can be directly
incorporated into the model by updating model parameters (purple
path). (b) 8 limb positions considered in this study.

performance in the new context while also preserving accuracy
when used in previous contexts.

Additionally, there has been a lack of emphasis on im-
plementing incremental learning methods with computational
resource constraints in mind. Because the framework grows
a dataset that must be retained for subsequent training ses-
sions, the memory footprint for storing training examples
must be considered for efficient in-sensor implementations.
While model parameters condense the information contained
in training examples for use during inference, some portion
of the original training dataset must usually be retained for
training or updating the model (Figure 1a, gray). Online SVM
training [23], [24] requires previous examples to potentially be
promoted as support vectors, and models trained with stochas-
tic gradient descent require that data from different contexts
be shuffled. It is therefore beneficial to find a model whose
parameters capture the necessary information for incremental
training but is also able to incorporate new data regardless of
the order in which it arrives (Figure 1a, purple).

Hyperdimensional (HD) computing, a computing paradigm
using random, high-dimensional hypervectors (HVs) as units
of representation, satisfies these needs [25]. For classification,
input features are first projected as HVs, distributing the
information across of 1000’s of elements consisting of ±1. The

HD classifier then operates as a nearest-prototype classifier,
where prototypes are calculated by superimposing training
HVs using element-wise addition or majority vote. The process
of learning a new example consists entirely of accumulating it
into the appropriate prototype, compressing training examples
into smaller model parameters with no dependence on the
order in which data is presented. This makes HD classifiers
inherently amenable to incremental learning.

HD computing has been applied in many biosignal clas-
sification tasks [26]–[28], and a fully embedded architecture
capable of training, inference, and a single incremental update
was demonstrated for EMG-based hand gesture recognition
[6]. That study showed how two different limb positions could
be learned in separate training sessions through continued
accumulation of training examples in real time. A more recent
pilot study with eight limb positions showed how sensor-fusion
with an accelerometer could improve classification without
drastically increasing model size [13]. However, there has been
little work analyzing methods for maintaining prototypes in
an incrementally trained HD classifier and their impact on
classification accuracy and memory footprint.

In this work, we present a range of HD classifier config-
urations for incrementally learning hand gestures in multiple
limb positions. We investigate choices for how accelerometer
signals should be encoded to provide limb position context
information, how new training HVs should be superimposed
into existing prototypes, and also how many prototypes per
class are allowed. To evaluate these choices, we collected
a new dataset from 5 able-bodied subjects performing 13
hand gestures in 8 limb positions (Figure 1b), and we created
an incremental training scenario in which new limb position
contexts were learned one at a time in random order. We
compared the configurations based on classification accuracy
and memory footprint, and we implemented incrementally
trained SVM and LDA models as traditional ML comparisons.

A key result we demonstrate is that performing a majority
vote computation for incremental superposition in two stages
not only reduces the memory required to store intermediate
values between incremental steps, but it also improves the
accuracy across all seen contexts. We then proceed to show
how various configurations trade off classification accuracy
and memory footprint, ranging from the smallest model with
85.71% accuracy and 264 kb of required memory to the largest
with 97.15% accuracy and 1.125 Mb of memory footprint.
Finally, by comparing with traditional ML models, we show
that HD computing can achieve comparable classification
accuracies while requiring an order of magnitude smaller
memory allocation, making it ideal for implementation on
resource-constrained devices.

II. METHODS

A. Dataset collection and feature extraction

We collected data from 5 subjects (2 male and 3 female)
performing 13 gestures in 8 limb positions while measuring
their forearm EMG and wrist-mounted accelerometer signals,
expanding on a pilot study with a single subject [13]. Data
were acquired using a custom wearable EMG device for
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wireless biosignal acquisition [6], [29], with a 64-channel
electrode array wrapped around the largest section of the
forearm and an accelerometer unit fixed a few inches above the
wrist and over the ulna. For this study, the array was fabricated
using a standard commercial flexible printed circuit board
process, rather than using the custom screen-printed array
shown in prior work [6]. The 13 gesture classes included 12
single degree-of-freedom movements of each digit along with
the rest class (no movement). Eight different limb positions
were chosen based on literature to mimic ones that may be
encountered in everyday use (Fig. 1b) [15].

Each gesture and limb position combination was performed
three times. Each repetition began in the default limb position
(Position 0) and the rest gesture, followed by transitioning to
the directed limb position and directed gesture, holding the
gesture for four seconds, and then returning to the default
position and rest gesture. For analysis, only the central four-
second steady-state period of the gesture performance was
used. Each period was divided into 50 ms windows for feature
extraction of the mean absolute value (MAV) of each of the 64
EMG channels and the average x-, y-, and z-axis acceleration.

B. Hyperdimensional computing for gesture recognition
Classification using HD computing involves projecting fea-

tures into bipolar HVs ({+1,−1}D, D = 10, 000), with key
building blocks including a random item memory (IM) rep-
resenting categorical information, a continuous item memory
(CIM) representing ranges of quantized values, and algebraic
operations to manipulate and combine HVs from these memo-
ries [25]. These operations include element-wise addition (+)
and multiplication (∗) between HVs, permutation (ρ) of the
elements within an HV, and scalar multiplication between an
HV and a scalar. The result of adding bipolar HVs is passed
through a sign function (σ(x) = +1 if x > 0, σ(x) = −1 if
x < 0) with random tiebreaks to produce superimposed bipolar
HVs with element-wise majority vote. For this study, we
implemented a projection architecture that has been successful
in EMG classification [6], [13], [26]. We represented each
electrode with a random, orthogonal HV stored in an IM. First,
spatial encoding was performed by computing a bipolarized
weighted sum of these HVs using the per-channel feature
values as weights. Temporal information was then encoded
using a permute and multiply operation across Ntemporal = 5
consecutive spatial HVs. Each encoded EMG HV represented
250 ms of data, with an overlap of 200 ms.

As shown previously, orthogonalizing HVs from different
contexts enables better classification performance when super-
imposing them into a single prototype [13]. We implemented
the two types of context encoding for orthogonalization de-
scribed in that work. For the first, accelerometer features were
quantized and represented by a CIM for each axis, and a single
context HV was produced by multiplying the retrieved HVs.
The number of quantization levels and distance between neigh-
boring CIM HVs were optimized for each subject individually.
For the second encoding, random, orthogonal context HVs
were assigned to each limb position context. Prior to training
or inference, context encoding was performed by multiplying
an EMG HV either type of context HV.

Classification of query HVs was performed through nearest
neighbor search among class prototypes. Prototypes were
calculated by superimposing training examples from each class
through element-wise majority, and similarity between proto-
types and queries was measured using Hamming distance.

C. Incremental learning with HD classifiers

We considered a scenario in which we incrementally train
on a sequence of m datasets S1,S2, ...,Sm where each set
consists of Si = {(xi,j , yi,j)} with xi,j ∈ X and yi,j ∈
{1, 2, ..., k} , 1 ≤ j ≤ ni being training examples and labels,
X being either the feature space or HD space, k being the
number of classes, and ni being the size of each dataset Si.
Each incremental dataset corresponds to a context, modeling
a scenario in which new limb positions are incrementally
learned over time. We represent the initial classifier trained on
S1 as CLF1, and subsequent updated classifiers as CLFi =
ftrain (Si, CLFi−1) where updated classifiers can only access
the latest dataset and previously trained classifier parameters.

For each new incremental training dataset, we can compute
candidate prototypes representing that specific context. There-
fore, we use the terms “candidate prototype” and “context-
specific prototype” interchangeably. For HD computing, where
incremental training and batch training can differ are:

1) How the candidate prototypes are incorporated into the
model’s prototype memory, and

2) What representations of the stored prototypes (or previ-
ous training examples) are available

We can either superimpose a candidate prototype with an
existing prototype, or, if our memory budget permits, we
can store it separately such that multiple prototypes represent
the same gesture. We first describe various algorithmic de-
sign choices for incrementally superimposing candidates with
stored prototypes, beginning with a method that produces an
identical model as with batch training, and introducing config-
urations with increasing optimization and approximation. We
then describe the overall algorithm with the ability to either
superimpose candidates or store them separately for a trade-off
between memory footprint and classification performance.

1) Incremental prototype superposition: If all training exam-
ples are retained in memory as model “parameters”, then each
incremental step can consist of batch training with all data
seen until this point, S = S1 ∪ S2 ∪ ... ∪ Si (Figure 1a). This
storage would require D×n bits in memory, where n =

∑
i ni

is the combined size of all incremental datasets. However, we
ultimately only require the class centroids, and thus we only
need to store their accumulated sums from each class (Fig. 2a).
We will refer to this method as example accumulation, and,
assuming class-balanced training examples, this reduces the
required memory footprint to be D×k×

(
blog2

(
n
k + 1

)
c+ 1

)
bits, where blog2 (N + 1)c + 1 is the memory required to
accurately sum N bipolar bits. For our dataset with 240
examples per class per context (n = 240×m× k = 24, 960),
this amounts to a reduction from 10, 000× 24, 960 ≈ 238 Mb
required to store all training examples down to 10, 000×13×
11 ≈ 1.36 Mb to only store their sums.
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Fig. 2. HD classifier incremental superposition configurations. Rows
of operations in (a) and (b) show updating a prototype during an
incremental training step, with Si being the ith incremental training set,
xi,j being training example HVs, σ being the bipolarization function,
and CLFi being the classifier after i steps. Vertical arrows indicate
values that must be preserved for the next incremental training iteration.
(a) Example accumulation of all previously seen training examples. (b)
Prototype accumulation from each dataset requires a lower bit-width
representation in memory. Prototypes are accumulated using integer
addition (shown) or through bit-wise merge (replacing the purple blocks).

The first optimization we can make is to only store and
accumulate bipolarized candidate prototypes at each step (Fig.
2b). Prototype accumulation requires fewer bits per element
than example accumulation, with overall memory footprint
being D × k × (blog2 (m+ 1)c+ 1). In our case with 13
gestures and 8 limb positions, we now only require 10, 000×
13× 4 ≈ 508 kb of memory.

The benefit of prototype accumulation is two-fold: not only
does it require less memory than example accumulation, but it
also potentially improves classification performance. Example
accumulation from multiple contexts with differing class clus-
ter spread creates prototypes with unbalanced representation
of the different contexts. By cluster spread, we refer to the
average similarity between HVs belonging to the same class.
In superposition using majority vote, classes with low spread
overwhelm more spread-out classes, leading to a prototype
that is more similar to the tighter class’s centroid and distant
from the noisier class’s centroid. This results in especially
bad performance when encoding limb position information
with orthogonal context HVs, as the prototype may end up
completely orthogonal to certain contexts it is supposed to
represent. On the other hand, prototype accumulation ensures
even context representation, as only a single HV from each
context is included in the sum.

Beyond this, we can approximate prototype accumulation
to further reduce model parameter memory size. Rather than
storing integer values, we instead only need 1 bit of memory
per prototype element if we use bit-wise merge to approximate
accumulation (Fig. 2b). The ith candidate prototype can be
merged into the stored prototype by randomly replacing 1/i
of the stored bits with bits from the candidate. This “learning
rate” of 1/i ensures that all seen candidate prototypes are
approximately equally represented [30]. While this results in
noisier prototypes, we reduce the parameter memory for our
scenario to 10, 000 × 13 ≈ 127 kb. A comparative summary
of these configurations is given in Table I.

2) HD computing incremental learning algorithm: The alter-
native to superimposing a candidate prototype is inserting it as
a separate prototype representing the same class. Interference
caused by different contexts in superposition is eliminated, and
the method is akin to using an ensemble of classifiers. Whether
a candidate prototype is kept separate must be consistent
across all gesture classes, requiring an additional D×k bits of
parameter memory. This decision can be based on a memory
budget for the number of separated contexts allowed, msep.
Before the budget is reached, the number of prototypes per
class grows with the number of incremental training steps.
After meeting the budget, one context will be selected as the
target context for future superposition, either at random or
based on its age. In subsequent steps, either new prototypes
or an existing separate prototype will be superimposed onto
the target prototype. The overall HD incremental learning
algorithm is described in Algorithm 1.

Algorithm 1: HD classifier incremental training
Input: Memory budget of msep separate prototypes per class and one

superimposed prototype representing msup contexts per class;
incremental superposition configuration; sequence of incremental
training datasets S1,S2, ...,Sm

Result: Incrementally trained HD classification model
1 for Si, i ∈ 1, 2, ...,msep +msup do
2 for g ∈ 1, 2, ..., k do
3 Compute candidate prototype for xi,j , yi,j ∈ Si∀yi,j == g
4 end
5 if i ≤ msep then
6 Store candidate prototypes as new AM prototypes
7 else
8 Randomly select between new context and stored separate contexts
9 if i = msep + 1 then

10 Set aside selected context prototypes as target prototypes
11 else
12 Accumulate selected context prototypes onto target prototypes

using incremental superposition configuration
13 end
14 end
15 end

3) Memory allocation: In addition to parameter memory, a
scratch memory is needed to store intermediate values during
feature projection to HVs and incremental training operations.
Random, orthogonal IM HVs can be generated sequentially
using a rule 90 cellular automaton with hardwired seeds
and connections [30], [31]. For spatial encoding, a single
32-bit floating point accumulator can be used to generate
the weighted sum for each, independent element. D bits
are required for storage of the bipolarized spatial HV. For
temporal encoding, we must store the previous Ntemporal− 1
projected spatial HVs as well, totaling a memory requirement
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Configuration Incremental superposition operations Parameter memory calculation Est. parameter memorya

Example accumulation σ
(∑i−1

l=1

(∑nl
j=1 xl,j

)
+
∑ni

j=1 xi,j

)
D × k ×

(
blog2

(
n
k + 1

)
c+ 1

)
1.36 Mb

Prototype accumulation σ
(∑i−1

l=1
σ
(∑nl

j=1 xl,j

)
+ σ

(∑ni
j=1 xi,j

))
D × k × (blog2 (m+ 1)c+ 1) 508 kb

Prototype merge merge
(

mergei−1
l=1

(
σ
(∑nl

j=1 xl,j

))
, σ
(∑ni

j=1 xi,j

))
D × k 127 kb

aD = 10, 000; k = 13;n = 24, 960;m = 8; 1 Mb = 1024 kb = 10242 b

TABLE I
INCREMENTAL HV SUPERPOSITION CONFIGURATIONS

of D ×Ntemporal + 32 bits for projection of EMG data.
For projection and classification of accelerometer data, we

can also generate CIMs based on hardwired logic gates and
seeds from the IM generator [30]. A single D-bit memory
is required for storage and sequential binding of the three
encoded accelerometer axes. If we wish to perform orthogonal
encoding, we can also implement a small HD model for con-
text classification, with a reduced HV dimension employing
only a subset of the bits from accelerometer encoded context
HVs. We found that a dimension Daccel = 316 was sufficient
for a context classification accuracy of 97.36%, within 0.5%
of the accuracy using full 10,000-D HVs.

For computation of candidate prototypes, projected HVs
can be accumulated using a D-dimensional array of 8-bit
saturating counters for 240 training examples per class in each
incremental dataset. A summary of the memory footprints
for various HD incremental learning configurations is given
in Table II. In building a classifier, an encoding method
(columns) must be chosen for context information, and an
incremental superposition method (rows) must be chosen to
update superimposed prototypes. A list of hyperparameters is
given, along with values that have been implemented for hand
gesture recognition. In particular, selection of msep, the budget
for separate prototypes per class, plays a large role in both
accuracy and memory footprint.

D. Comparison methods
As comparisons to our HD classifier, we incrementally

trained two traditional ML algorithms—support vector ma-
chine (SVM) and linear discriminant analysis (LDA)—
commonly used for EMG-based gesture recognition. We used
the last Ntemporal = 5 MAV features for each channel
along with the 3 accelerometer axis features to build 323-
element feature vectors. In addition, the entire dataset was
Z-scored when using SVM. We chose to compare models
based on accuracy and memory footprint only, as computation
time or complexity comparisons would depend on the exact
implementations of each algorithm. For gesture recognition,
classification throughput is low (e.g., 20 classifications per
second) and data windows are long (e.g., 250 ms), so algorithm
latency is a relatively small portion of the overall system
latency. Incorporating hardware re-use and time multiplexing
can make it especially difficult to make fair comparisons.

We chose a linear SVM classifier which required no kernel
function evaluation that produced high classification accuracy
results with our dataset. We tuned the regularization parameter
C using 5-fold cross-validation in a batch setting for each sub-
ject. The optimal value C = 0.1 offered the best classification

performance while reducing the number of support vectors,
thus reducing memory footprint. Although storing individual
support vectors is not required for SVM inference, it is still
needed for updating incrementally trained SVM models.

We first implemented a linear classifier trained using
stochastic gradient descent (SGD) as a way to fit parameters
for a linear SVM. This method did not require storage of
previous training examples, instead updating model weights
through a few iterations of SGD over each new incremental
training dataset. Within each context, data from all gesture
classes were made available at one time to allow for shuffling,
necessitating a large scratch memory during each training step.

Next, we explored methods for augmenting and curating
datasets for retraining. After each incremental step, we re-
served the model support vectors to augment the next incre-
mental training dataset [32]. Each new dataset could consist of
either all gestures or a single gesture in a new context. Fewer
total steps were required when updating with all gestures,
but this relied on a larger scratch memory for temporarily
storing the data. Because the overall training effort and the
resulting number of support vectors grow with the size of the
training dataset [24], we also explored methods to subsample
from the new datasets. The first method subsampled training
examples which produced errors when tested on the existing
model, based on the assumption that these examples were most
likely to become new support vectors [33]. We further reduced
the number of examples by also randomly subsampling a
percentage of the training sets, trading off generalization for
reduced memory.

We then trained an ensemble of SVM models, with one
model for each context. We still enabled gesture-by-gesture
training for each context-specific model, as well as training
set reduction by randomly subsampling. Memory footprints for
the incrementally trained SVM models were measured as the
number of 323×32-bit floating point support vectors retained
the next step. We also estimated the training scratch memory
as the size of the subsampled training dataset used. This
underestimates the memory requirement, as we didn’t account
for data standardization or additional memory for solving
the SVM quadratic programming problem and computing
coefficients for candidate support vectors.

For the LDA classifier, we first considered online updates
to compute model parameters, which consisted of 323×32-bit
mean feature vectors for each class and an overall 323×323×
32-bit covariance matrix. Model parameters could be updated
on a sample-by-sample basis in an exact manner, requiring
only the previous parameters and scratch memory to compute
the update to the covariance matrix [34]. We also compared
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D = HV dimension = 10, 000;Ntemporal = N-gram length = 5

n = total number of training examples = 24, 960;m = total number of contexts/incremental steps = 8; k = total number of classes = 13

nm = number of training examples per context/incremental step = n
m = 3, 120

Daccel = HV dimension for accelerometer context classification = 316

msup = number of contexts expected for superposition;msep = number of contexts allowed to be stored separately
msup +msep = m = 8

TABLE II
MEMORY FOOTPRINT OF VARIOUS HDC INCREMENTAL LEARNING CONFIGURATIONS

using an ensemble of context-specific LDA classifiers, which
requires the same incremental training effort, but m-times the
parameter storage memory.

III. EXPERIMENTS & RESULTS

A. Comparison of incremental superposition methods

Fig. 3. Accuracy for increasing number of contexts in superposition
using HD incremental superposition configurations. E.A. = example
accumulation; P.A. = prototype accumulation; P.M. = prototype merge.

Fig. 3 demonstrates the ability of HD classifiers to learn
different numbers of limb position contexts through incre-
mental superposition. For each value of msup, a model with
one prototype per class was incrementally trained using all
possible combinations of msup context-specific datasets. As
a reference, we were able to achieve 98.95% accuracy with
SVM and 93.78% accuracy with LDA when batch training
and testing in all 8 limb positions. Accelerometer encoding
and orthogonal encoding greatly improved classification ac-
curacy for larger msup, with the best performance achieved

using orthogonal encoding and prototype accumulation. This
configuration leveraged both the reduced interference from
orthogonalizing HVs of different contexts, as well as the more
balanced representation of two-stage bipolarization. The effect
of unbalanced representation can be clearly seen in the ex-
ample accumulation results for accelerometer and orthogonal
encoding of msup = 2 contexts, where it was much more
likely for a tighter cluster from one context to “overwhelm”
a noisier cluster from another. This effect was reduced as
more contexts were superimposed, resulting in increasing
performance with orthogonal encoding for higher msup.

There was also a slight dependence of performance on the
parity of msup, with odd values outperforming even values
when using context encoding. By orthogonalizing different
contexts, the likelihood of ties in superposition was higher
when summing an even number of contexts. Ties should be
broken at random, but slight differences in spread caused tie-
breaking to skew towards one context, reducing representation
of others. Skewed tie-breaking is less likely to occur when
summing an odd number of contexts.

Finally, prototype merge is shown to be a useful approx-
imation of prototype accumulation only for small values of
msup. Beyond msup = 3 or 4, the limited capacity of merging
orthogonal HVs caused accuracy to degrade more.

B. Incremental HD classifier performance
For incremental learning performance evaluation, we first

divided the gesture recognition dataset into 5 folds for leave-
one-out cross-validation. We further split training and testing
datasets into context-specific datasets. We generated a random
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Fig. 4. Incremental learning performance using HD computing as measured in (a) accuracy, (b) forgetting, and (c) intransigence with respect to a
batch trained HD classifier withmsep = 0. Within the 3× 3 grids, each row represents a different incremental superposition configuration (E.A. =
example accumulation; P.A. = prototype accumulation; P.M. = prototype merge) and each column represents a different context encoding method.
Colors represent the value of msep. (d) Summary of results after the last incremental step with varying msep. Each row represents a different
metric, each column represents a different context encoding method, and line styles represent the incremental superposition configuration.

ordering for the contexts and provided each context-specific
training dataset to the incremental learning algorithm one at
a time. After each step, the model was tested on all testing
datasets corresponding to the seen contexts, and this was
continued until all contexts were learned. This process was
repeated for each subject individually, and at least 128 random
context permutations were generated for each experiment.

We measured three metrics during the incremental training
process, the first being average classification accuracy. We
computed context-specific classification accuracy ai,j corre-
sponding to the accuracy of the jth seen context after i training
steps. The average classification accuracy was then computed

as Ai = 1
i

∑i
j=1 ai,j .

While accuracy reflected the overall performance, we could
better analyze model deficiencies by computing forgetting
and intransigence [35]. Forgetting quantifies how much the
incremental learning algorithm loses what it has learned in the
past due to overwriting or interfering with relevant parameters.
We calculated forgetting for the jth seen context after the ith
step as fi,j = maxl∈{1,2,...,i−1} al,j − ai,j . The first term was
the best classification accuracy ever achieved by the model,
and the second was the accuracy with the updated model.
More positive values of fi,j were worse and indicated more
forgetting, while negative values indicated that the model had
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improved for that context after incrementally training with
other contexts. Average forgetting for each step was then
computed as Fi = 1

i−1
∑i−1
j=1 fi,j .

Intransigence, on the other hand, measures the model’s
inability to incrementally learn a new context, compared to
if the model was batch trained. This was computed as Ii =
a∗i − ai,i, where a∗i was the batch trained model accuracy
using the same data. Like forgetting, poorer intransigence was
represented by greater positive values. For the incremental HD
classifier, we measured intransigence against a batch-trained
HD model with example accumulation and msep = 0.

Fig. 4 shows metrics measured after each incremental step
for various configurations of our HD classifier. In each 3× 3
grid of Figs. 4a-c, each configuration is represented by one plot
with different colored lines for varying msep. Metrics were
averaged over all subjects, all possible context permutations,
and all possible groupings of superimposed and separate
contexts. Each step is shown as incrementally learning an
entire new limb position context, although the training process
was able to incorporate new context data one gesture at a time.

Average classification accuracy (Fig. 4a) degraded as more
contexts were stored in superposition. This is expected
from the superposition analysis, with the curves representing
msep = 0 in Fig. 4a being identical to those in Fig. 3.
Higher msep budgets traded off memory footprint for better
performance. However, storing superimposed prototypes to-
gether with separate prototypes also introduced some negative
effects, as shown in the top row of Fig. 4d. Here, we plot
the metrics achieved by each configuration after completing
all 8 incremental steps, demonstrating that there was at first
a slight accuracy degradation when increasing msep with
accelerometer encoding, contrary to intuition. This was due to
certain pairs of contexts producing more similar accelerometer
encoded context vectors (e.g., positions 0 and 4). With smaller,
non-zero msep, there was an increased chance that one of the
pair was stored separately while the other was superimposed
with a large number of more distant contexts. Examples from
the superimposed context could be most similar to the separate
paired context prototypes, causing misclassification.

The causes of accuracy degradation over incremental train-
ing steps can be seen in the average forgetting, plotted in
Fig. 4b. Compared to msep = 0, small non-zero values
for msep caused worse forgetting since superimposed con-
texts were randomly selected. In these cases, there was a
greater likelihood that prototypes for a context were at one
point stored separately, achieving maximum within-context
accuracy, and then subsequently superimposed, causing some
accuracy degradation. Along with the paired context effect
explained above, this caused a peak in average forgetting after
all incremental steps to fall near msep = 2 for no encoding and
accelerometer encoding, as shown in the middle row of Fig.
4d. As we increased msep to allow for separate prototypes for
all contexts, the forgetting dropped to near 0. For orthogonal
encoding, there was no peak, but rather a dependence on the
parity of msep when using example accumulation.

Finally, plotting intransigence shows that incrementally
trained HD classifiers were for the most part more capable
of incorporating new contexts than the batch trained model

due to their ability to store new prototypes separately (Fig.
4c). This effect was much more pronounced when not us-
ing any context encoding. When constrained to superimpose
new contexts, models exhibited higher intransigence with
the number of incremental training steps. However, using
prototype accumulation with orthogonal encoding resulted in
negative intransigence even for msep = 0, suggesting that
bipolarization in two stages should also be leveraged during
batch training for improved performance.

C. Incremental SVM and LDA performance
Fig. 5 shows the performance of SVM and LDA in our in-

cremental learning experiments. The SVM trained using SGD
(Fig. 5a) experienced large amounts of accuracy degradation,
with a classification accuracy under 70% after all incremental
training steps. This was almost entirely due to forgetting, a
well known issue with gradient descent-trained classifiers.

Methods of dataset augmentation for incrementally update
an SVM classifier (Fig. 5b-e) produced results with similar
dependencies on the percentage of training data used, with
almost all error due to intransigence. Incrementally augment-
ing the dataset for each context (Fig. 5b) in one step produced
more consistent accuracy early on than incrementally augment-
ing gesture-by-gesture (Fig. 5d). However, the performance
difference was marginal after all steps. Augmenting the dataset
with only misclassified examples (Fig. 5c, e) made a larger
impact when incrementally training on entire contexts at a
time than gesture-by-gesture.

Finally, the performance of the LDA classifier (Fig. 5f)
showed that with accurate mean and covariance updates,
classification accuracy fell gracefully due to forgetting.

D. Comparison of memory footprint
Fig. 6a shows memory footprint vs. classification accu-

racy for incremental HD classifier configurations after all
incremental steps. As expected, superposition using example
accumulation required the largest memory footprint to store
higher-precision accumulations. Each configuration employing
example accumulation was bested by a smaller configuration
using prototype accumulation or merge for equivalent or better
accuracy. Between prototype accumulation and merge config-
urations, accuracy depended mostly on the context encoding
method. The Pareto set consisted almost entirely of orthog-
onal encoding configurations, except for the smallest, single-
prototype configuration using prototype merge and accelerom-
eter encoding. At the other extreme, all of the configurations
performed equally well when msep = m.

It is worth noting that while memory footprint comparison
is a good baseline, it does not paint the full picture. For
example, of the configurations sized approximately 600 kb,
the most accurate used prototype merge with msep = 3 for a
total of 4 prototypes per class. Slightly below this in accuracy
was the model using prototype accumulation with msep = 0.
Despite having the same memory footprint, inference for
this configuration would be much quicker, requiring 1/4 the
number of comparisons with a query. Since a comparison
consists of D = 10, 000 XORs followed by a popcount of D
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Fig. 5. Performance comparison with SVM and LDA classifiers. Each column shows accuracy, forgetting, and intransigence metrics for (a) SVM
updated through stochastic gradient descent (SVM SGD), (b) SVM with data augmentation using entire context-specific datasets, (c) SVM with
data augmentation using misclassified examples from entire context-specific datasets, (d) SVM with data augmentation using gesture-by-gesture
datasets, (e) SVM with data augmentation using misclassified examples from gesture-by-gesture datasets, and (f) incrementally trained LDA. For
the SVM with augmented datasets, different training percentages were used and plotted in different colors.

Fig. 6. Memory footprint for implementing various incremental HD classifier configurations and incrementally-trained traditional ML methods.
(a) Differentiation between different HD classifier configurations. Total memory includes both parameter storage and scratch memory for training.
Shapes represent the different incremental superposition configurations (E.A. = example accumulation; P.A. = prototype accumulation; P.M. =
prototype merge), and colors represent the different encoding methods. (b) Comparison of HD configurations with traditional models. HDC =
incremental HD; LDA ensemble = ensemble of context-specific LDA; LDA = incrementally updated LDA; SVM ensemble = ensemble of context-
specific SVM; SVM augment = incrementally retrained SVM using dataset augmentation; SVM SGD = SVM trained with stochastic gradient descent.

bits, this could be a substantial saving in inference computation
without much sacrifice in terms of accuracy.

Finally, we compare the incremental HD classifier config-
urations with traditional ML models in Fig. 6b. The best HD
configurations were able to achieve similar accuracies while
occupying over an order of magnitude smaller footprints.

The SVM trained using SGD was unable to produce ac-
ceptable results while also requiring a large memory footprint.

Performance of SVMs incrementally trained through dataset
augmentation was extremely dependent on the number of
support vectors, which varied with training percentage. Even
the smallest SVM models were larger than the best performing
HD classifiers. Training an ensemble of context-specific SVMs
improved the top-end classification accuracy but resulted in the
largest of models we tested.

We were able to achieve the best overall accuracy using
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an ensemble of context-specific LDA classifiers with a total
memory footprint more than 26× the size of the most accurate
HD model. Incrementally updating a single LDA classifier
required only 3× more memory but had poorer classifica-
tion performance. Our comparison shows that incremental
HD classifiers were considerably more memory efficient than
traditional methods and made up a large portion of the Pareto
set when considering both memory footprint and accuracy.

IV. CONCLUSION

In this paper, we presented various configurations of in-
crementally trained HD classifiers for gesture recognition in
different limb positions. We offer a range of context encoding
and incremental HV superposition methods, and we demon-
strate how increasing the allowance for multiple prototypes
can improve accuracy. Selections will depend on platform
memory allowances in which the model is to be embedded.
Our experiments show that the best HD classifiers can be
updated in multiple limb position contexts while maintaining
a competitive classification accuracy of 97.15%. Compared to
traditional ML models like SVM and LDA, which can require
an order of magnitude more memory for similar performance,
HD classifiers are far better suited for implementation on
resource-constrained, wearable devices for rehabilitation and
human-machine interface.
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